
Python at

Tomaz Muraus
tomaz.muraus@rackspace.com

June 22, 2011

mailto:tomaz.muraus@rackspace.com

Agenda

● Who am I
● What is Cloudkick
● Cloudkick Architecture
● Why Python?
● Python at Cloudkick

Agenda

● Web Application & Django
● Backend / Network Services &

Twisted
● Service Communication & RPC
● Testing
● Other places
● Questions

Who am I

● Tomaz Muraus, @KamiSLO
● Software developer at Cloudkick /

Rackspace
● Author of multiple Python libraries and

Django apps – http://github.com/Kami
● FOSS supporter & lover
● Apache Libcloud Committer

http://github.com/Kami

What is Cloudkick

● Server management and monitoring SaaS
● Manage all your cloud and physical servers

from a single control panel
● Set up monitors and alerts – only get waken

up when the stuff actually breaks
● Annotate graphs
● and more...

What is Cloudkick

What is Cloudkick

What is Cloudkick

What is Cloudkick

Cloudkick Architecture

Why Python?

● Expressive
● Developers love it
● Quality library for just about anything

you can think of
● Large and active community
● Whitespace matters!

Python at Cloudkick

● Used in many different places
● Web application
● Backend / Network services
● Random scripties

Web application & Django
● Web framework - Django
● Migrations - south
● API – piston
● Cassandra – Custom library & ORM
● Solr - solrpy

Web application & Django

● Profiling – ProfilingMiddleware,
python-profiler

● Exception logging - django-sentry

Web application & Django

Backend Services & Twisted

● Twisted is used heavily
● Old, battle-tested, (mostly) works
● Supports almost any protocol you can

think of
● Writing good Twisted code is not that

easy

Backend Services & Twisted

● Uncaught exceptions = memory leaks
● Be careful with threads.deferToThread
● emailLogObserver for sending

tracebacks to email

Backend Services & Twisted

● Uncaught exceptions = memory leaks
● Be careful with threads.deferToThread
● emailLogObserver for sending

tracebacks to email

Backend Services & Twisted

● We use a simple stats library for
recording service-level metrics

● Metrics are exposed over HTTP in a
JSON format

● Similar to
https://github.com/codahale/metrics

https://github.com/codahale/metrics

Backend Services & Twisted

● counter.add(key)
● counter.inc_ops(key)
● counter.dec_ops(key)
● counter.add_avg(key, value)
● counter.bind(key, type, func, *args,

**kwargs)
● @count_calls

Backend Services & Twisted

counter = Counter()

def my_function2(*args, **kwargs):
 try:
 # Increase operation count
 counter.inc_ops('execute_some_op')
 some_op()
 except Exception, e:
 # Increase the counter
 counter.add('some_op_failed')
 finally:
 # Signalize that the function has finished
 # pending -= 1
 counter.dec_ops('execute_come_op')

Backend Services & Twisted

counter = Counter()

def my_function3(*args, **kwargs):
 start = time.time()
 my_function()
 # Measure how long function execution took
 counter.add_avg('my_function_execute_ms',
 (time.time() - start))

Backend Services & Twisted
{'metrics': [{'name': 'execute_some_op_pending',
 'type': 'int', 'value': 3},
 {'name': 'execute_some_op_total',
 'type': 'gauge', 'value': 4},
 {'name': 'my_function_execute_msg_avg',
 'type': 'float',
 'value': 22.666},
 {'name': 'my_function_execute_msg_max',
 'type': 'float',
 'value': 100},
 {'name': 'my_function_execute_msg_min',
 'type': 'float',
 'value': 4.2},
 {'name': 'some_op_failed', 'type': 'float', 'value': 3},
 {'name': 'uptime', 'type': 'float', 'value': 123.08233}],
 'state': 'ok',
 'status': 'service is good'}

Service Communication and RPC

● Event framework
● Scribe
● Thrift

Service Communication and RPC

● Event framework
● Multiple policies:

● Fan out
● Round Robin
● Scoped Round Robin

● Used in Django and Twisted land

Service Communication and RPC

Service Communication and RPC

Service Communication and RPC

Service Communication and RPC

Subscribe example

from cloudkick.events.async import dispatcher

def readyhook():
 dispatcher.register(Topic.TEST1, Policy.FANOUT,
 handle_event1, topic)
 dispatcher.register(Topic.TEST2, Policy.ROUND_ROBIN,
 handle_event2, topic)

dispatcher.ready_hook(readyhook)

Service Communication and RPC

Publish example

from cloudkick.events.async import dispatcher
from cloudkick.events.path_defines import Topics

dispatcher.start()
event = event_ttypes.NodeNameUpdate(node=_id=1234,
 old_name='foo', new_name='bar')
dispatcher.publish(Topics.NODE_UPDATE, event,
 account_id=1, user_id=2)

Testing

● Not that fun
● Someone has to do it
● Functional tests – Django test

framework & unittest
● Integration tests – Twisted test

framework (trial)

Testing

● Custom Django and Twisted parallel
test runner

● Up to 50% faster

Other places

● Deployment – fabric
● Continuous Integration – buildbot
● ...
● Snakes are everywhere!11

Questions?

?

Questions?

● Thanks

● P.S. We are looking for Python devs -
http://rackertalent.com/san-francisco/

http://rackertalent.com/san-francisco/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

