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Who am I

● Tomaz Muraus, @KamiSLO
● Software developer at Cloudkick / 

Rackspace
● Author of multiple Python libraries and 

Django apps – http://github.com/Kami
● FOSS supporter & lover
● Apache Libcloud Committer

http://github.com/Kami


What is Cloudkick

● Server management and monitoring SaaS
● Manage all your cloud and physical servers 

from a single control panel
● Set up monitors and alerts – only get waken 

up when the stuff actually breaks
● Annotate graphs
● and more...
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Cloudkick Architecture



Why Python?

● Expressive
● Developers love it
● Quality library for just about anything 

you can think of
● Large and active community
● Whitespace matters!



Python at Cloudkick

● Used in many different places
● Web application
● Backend / Network services
● Random scripties



Web application & Django
● Web framework - Django
● Migrations - south
● API – piston
● Cassandra – Custom library & ORM
● Solr - solrpy



Web application & Django

● Profiling – ProfilingMiddleware, 
python-profiler

● Exception logging - django-sentry



Web application & Django



Backend Services & Twisted

● Twisted is used heavily
● Old, battle-tested, (mostly) works
● Supports almost any protocol you can 

think of
● Writing good Twisted code is not that 

easy



Backend Services & Twisted

● Uncaught exceptions = memory leaks
● Be careful with threads.deferToThread
● emailLogObserver for sending 

tracebacks to email
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Backend Services & Twisted

● We use a simple stats library for 
recording service-level metrics

● Metrics are exposed over HTTP in a 
JSON format

● Similar to 
https://github.com/codahale/metrics

https://github.com/codahale/metrics


Backend Services & Twisted

● counter.add(key)
● counter.inc_ops(key)
● counter.dec_ops(key)
● counter.add_avg(key, value)
● counter.bind(key, type, func, *args, 

**kwargs)
● @count_calls



Backend Services & Twisted

counter = Counter()

def my_function2(*args, **kwargs):
  try:
    # Increase operation count
    counter.inc_ops('execute_some_op')
    some_op()
  except Exception, e:
    # Increase the counter
    counter.add('some_op_failed')
  finally:
    # Signalize that the function has finished
    # pending -= 1
    counter.dec_ops('execute_come_op')



Backend Services & Twisted

counter = Counter()

def my_function3(*args, **kwargs):
  start = time.time()
  my_function()
  # Measure how long function execution took
  counter.add_avg('my_function_execute_ms', 
                  (time.time() - start))



Backend Services & Twisted
{'metrics': [{'name': 'execute_some_op_pending', 
              'type': 'int', 'value': 3},
             {'name': 'execute_some_op_total', 
              'type': 'gauge', 'value': 4},
             {'name': 'my_function_execute_msg_avg',
              'type': 'float',
              'value': 22.666},
             {'name': 'my_function_execute_msg_max',
              'type': 'float',
              'value': 100},
             {'name': 'my_function_execute_msg_min',
              'type': 'float',
              'value': 4.2},
          {'name': 'some_op_failed', 'type': 'float', 'value': 3},
          {'name': 'uptime', 'type': 'float', 'value': 123.08233}],
 'state': 'ok',
 'status': 'service is good'}



Service Communication and RPC

● Event framework
● Scribe
● Thrift



Service Communication and RPC

● Event framework
● Multiple policies:

● Fan out
● Round Robin
● Scoped Round Robin

● Used in Django and Twisted land



Service Communication and RPC
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Service Communication and RPC

# Subscribe example

from cloudkick.events.async import dispatcher

def readyhook():
  dispatcher.register(Topic.TEST1, Policy.FANOUT,
                      handle_event1, topic)
  dispatcher.register(Topic.TEST2, Policy.ROUND_ROBIN,
                      handle_event2, topic)

dispatcher.ready_hook(readyhook)



Service Communication and RPC

# Publish example

from cloudkick.events.async import dispatcher
from cloudkick.events.path_defines import Topics

dispatcher.start()
event = event_ttypes.NodeNameUpdate(node=_id=1234,
                     old_name='foo', new_name='bar')
dispatcher.publish(Topics.NODE_UPDATE, event,
                   account_id=1, user_id=2)



Testing

● Not that fun
● Someone has to do it
● Functional tests – Django test 

framework & unittest
● Integration tests – Twisted test 

framework (trial)



Testing

● Custom Django and Twisted parallel 
test runner

● Up to 50% faster



Other places

● Deployment – fabric
● Continuous Integration – buildbot
● ...
● Snakes are everywhere!11



Questions?

?



Questions?

● Thanks

● P.S. We are looking for Python devs - 
http://rackertalent.com/san-francisco/

http://rackertalent.com/san-francisco/
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